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1. INTRODUCTION

Criticality calculations for nuclear reactors are commonly based [8, 12, 13[
on 5-point difference approximations to the multigroup diffusion equations
in plane sections, which have a low order of accuracy: O(h2) if the mesh is
uniform, and only O(h) if the mesh is nonuniform. The results reported
here concern. the possibility of developing "finite element" variational
methods having higher-order accuracy which could advantageously replace
them. l

For elliptic problems whose solution is sufficiently smooth (e.g., of class
C(2m)), variational methods using Hermite interpolation or spline subspaces
of piecewise polynomial functions are known2 to give sets of algebraic equa
tions whose solution yields a function approximating the exact solution with
order of accuracy O(h2m). However, plane sections of nuclear reactors are
typically piecewise homogeneous media separated by interfaces with corners,
where the "flux" becomes,nonanalytic and has what may be called an angular
singularity. Analogous "angular singularities" occur in elliptic problems
arising in many other branches of physics, such as electromagnetic theory.

To develop "finite elements", some linear combination of which will
approximate to a high order of accuracy the exact solution of the multigroup
diffusion equations in'such reactors, one must know the analytical' nature
of the angular singularities of the exact solution (flux) near such corners.
When difference methods are used, one typically "subtracts out" the leading

1 The research reported here was supported by the Atomic Energy Commission under
Contract AT(3Q-1)-3971. The author wishes to thank George Fix, Bruce Kellogg, and
Robert E. Lynch for valuable comments.

2 See [2, Lectures 7-8] for references to the original proofs by Varga, Schultz, and the
author.
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terms of the singularity [7, pp. 302-3] and [14]; to obtain an analytic (or
smooth) remainder, one must know their coefficients. Fortunately, with the
Rayleigh-Ritz-Galerkin method, it is enough to know the form of the
singularity; the coefficients can be determined to the specified order of
accuracy from the variational conditions. Thus one need only guess the
right singular basis functions; these, combined with piecewise bicubic poly
nomial functions, are known [5; 3, p. 137], and [2, Lecture 8] to give the
Rayleigh-Ritz method a high order of accuracy.

Unfortunately, the nature of angular singularities seems to be unknown
even in the simplest two-region cases.

The simplest case at all typical for nuclear reactor theory is that of the
one-group diffusion equation. This is an elliptic partial differential equation
of the particular form

v . (pVu) + CAp - q)u = sex, y); (1)

I shall assume that the coefficient functions p(x), p(x), q(x), sex) are region
wise constant, and in general (for simplicity) that most of them vanish.

My ultimate objective is algorithmic: To find the simplest possible singular
basis functions which will achieve a given order of accuracy. To quote
Rayleigh, I shall "neither seek nor avoid mathematical difficulties." And I
shall be concerned only indirectly with general theorems about the existence,
uniqueness, and most general function space membership of solutions,
questions which have been considered by Ladyzhenskaya [9], Kellogg,3 and
others.

By a simple angular singularity of the DE (1), I mean a point near which,
in suitable polar coordinates, the coefficient functions p, p, q, s are piece
wise constant in prescribed angular sectors (exi-l , exi) for i = 1'00" s, so that

per, (}) = Pi ,
q(r, B) = qi'

per, B) = Pil
s(r, B) = Si\

for BE (exi-l , exi)' (1')

This paper will be concerned with the explicit solution of one-group diffusion
equations of the form (1) near simple angular singularities of the form (1').
I shall assume the interface condition that u and poulon are continuous across
interfaces, so that (for r > 0), u(r, exi-) = u(r, exi+) and

(2)

this is appropriate for reactor theory [8, p. 102].

3 See R. Bruce Kellogg, "On the Poisson equation with intersecting interfaces," Tech.
Note BN-643, Feb., 1970.
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Condition (2) is "natural," in the sense that it is automatically fulfilled
by functions which make stationary the variational expression appropriate
to the one-group diffusion problem. When p = 0 (the true source problem),
this is

J[u] = JJ{pVu . Vu + qu2 - 2s u} dx dy. (3)

In the source-free (homogeneous) case s = 0, the DE (l)reduces in each
region to pV2U + au = 0, or V2U + k 2u = 0 for k 2= (a/p) , and so it is
reasonable to refer to (I) as a piecewise Helmholtz equation. When s = 0
(the eigenfunction problem), the appropriate variational expression is the
Rayleigh quotient

R[u] = JJ{pVu . Vu + qu2} dx dy/ JJpu2dx dy. (3')

For the fact that (2) is natural, we refer the reader to [6, section 19.4; 11].

2. SOURCE IN QUADRANT

I shall treat first the simplified case of a Poisson equation [(I) with p = I
and q = p = 0], whose source term has an angular singularity. The case
of a uniform source in one quadrant is typical. Symmetrizing, we have

if I () I < 7T/4,
otherwise.

(4)

This problem can be solved in the plane by using Fourier series. Expanding
the source term in (4), we get

(5)

where

an = 1~2/n
±v2/n

if n == 0 or 4 l
if n = ±2
if n - ±I or ±3

(mod 8). (5')

Since V2(r2cos nO) = (4 - n2) cos nO and

V2(r2In r cos 20) = 4 cos 20,
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we can solve (5) term by term, getting the particular solution

\ 1 1 [- In r ~ (X ] I
u = r2 1- 16 + --;; - V2 cos 8 + 4 cos 2() + n7:

3
n2 -=- 4 cos n8 \. (6)

We can also solve (4) in the disc [ r I ~ a for the boundary condition
u(a, () = 0, by subtracting from it the harmonic function

l 1 1 [ - r r a In aher, 8) = a2 - - + - - v2 - cos () +-- cos 28
. 16 17 a 4a2

00 (X2 rn ]!+ L 2 -=- 4 n cos n8
n=3 n a

(7)

which assumes the same values on r = a as u in (6).
To solve (4) analytically in a square is more complicated; a typical problem

might concern a uniform source in the first quadrant of a square as in Fig. 1.

y

FIGURE 1

Fortunately, the nature of the ("simple") angular singularity near the center
is presumably independent of the shape of the boundary. If we can describe
it as a linear combination of a small number of "singular basis flJnctions,"
we can hope to apply successfully the variational methods used in [51 (and
reviewed in [3, p. 137; 1, Lecture 8]).

The terms of (6) are all 0(r2) or 0(r2 1n r); individually, they would give
an infinite sequence of singular basis functions which, when rotated through
45° to conform to Fig. 1, are

(x + y)r, xy In r, etc.

To omit anyone would give an error which was 0(r2
).

However, all the terms except xy In r are of the form r2hk(8). Hence we
can use as singular basis functions xy In r and a single solution r 2G(8) of
V2u = u(8), where u(8) is the part of s(8) in (5) orthogonal to cos 28, where
8 = 0 bisects the first quadrant.
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To determine G(O), we solve

G"(O) + 4G(0) = G(O), G(O + 21T) = G(O), (8)

where G is given and (scaling for numerical convenience and letting the x
and y axes be 0 = ±1T/4 for analytical convenience) by

G(e) - j1T - e sin 28 if I 8 I < 1T/4, (9)
- 1(1T - e) sin 20 if 1T/4 < I e 1< 1T.

One easily verifies that this G(O) satisfies (8) and G'(±1T) = 0, G(1T/4) = 31T/4,
and G'(1T/4) = 1, whence G E Cl is the desired function.

To apply the method of [5] and [3], one wants singular basis functions
whose support is confined to a few mesh rectangles, but whose behavior
near r = 0 matches that of the two singular basis functions just obtained.4

One should therefore replace the functions xy In rand r 2G(e) by something
like xy B(x) B(y) In rand B(x) B(y) r 2G(0), where B(x) = 16h3 - 6hx2 + I X 13

satisfies B(±2h) = B'(±2h) = O.

Remark. The singular basis functions derived above for the Poisson
Eq. (4) are adequate much more generally. Thus, suppose we wish to match
the angular singularity of the solution u(r, 8) of the source problem

(10)

where see) is given by (5)-(5'). Then, comparing with the derivation of (6)
and (9), we see that the exact solution v = [r2 ln r cos 20]/4 + r2G(e) of (4)
satisfies V2V - k2v = s(8) + 0(r2 In r). Hence the solution of Eq. (10) is
v(r,O) + w(r, e), where V2W - k2w = 0(r2 1n r) and so (presumably)
w = 0(r4 In r). The angular singularity of the actual solution is thus pre
sumably acceptably approximated by the singular basis functions xy B(x)B(y)
In rand B(x)B(y)r2 G(O).

3. PIECEWISE LAPLACE EQUATION

Since the angular singularity at the origin r = 0 of the system (1)-(1') is
dominated by the first term of (1) in the sense that this term of the operator
multiplies functions by a factor 0(y-2) in general, it is appropriate to consider
first the special case p = q = 0 of the piecewise Laplace equation
V . (pVu) = 0 [subject to the interface condition (2)]. Angular singularities
of this equation have been of interest since the time ofPoisson, in connection

4 Specifically, the general solution of the quadrant source problem is just the sum of
the particular solution (6) and a harmonic function (which is analytic).
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with electrostatics. For a straight interface (the two-sector case of (1 '),
with ai = ± 1T12), see [8a, sections 135-8 and 224-5]; the general case
s = 2 is discussed in [4, Vol. 1, p. 55].

For the piecewise Laplace equation, a general class of solutions can be
found by separating variables. Thus, trying u = r"g(B), we find that (1) is
equivalent to

v .(pVu) = rv- 2p[v2g(B) + g"(B)] = 0;

hence for r > °to

g" + v2g(B) = 0 in each sector (ai-I, ai)' (11)

Note that the function p(B) intervenes only through the interface conditions
(2), or

(11')

Indicial periodic Sturm-Liouville system.

I shall call the system (11)-(11'), together with the condition that g(B) be
periodic of period lon', the indicial periodic Sturm-Liouville system associated
with the simple angular singularity of (1)-(1')-(2). It determines an infinite
sequence of eigenfunctions gm(B), each with one or two characteristic exponents
v = v(m), in much the same way that the regular singular point of
1"(r) + r-11'(r) = v2f(r) determines the characteristic exponents v = 0, 1,
1, 2, 2, ... in the case of the Laplace equation

V2U = 0, g2k(B) = cos kB, g2k-l(B) = sin kB.

The preceding analysis shows that the piecewise Laplace DE V . (pVu) = 0,
with pCB) = Pi in (ai-I, ai), has solutions of the special form rvg(B), where
v = v(m) and g(B) are, respectively, an eigenvalue and eigenfunction of the
indicial periodic Sturm-Liouville system (11)-(11') associated with V . (pVu)
= 0. Because (11) is a second-order system, one can use the Priifer substitution
to compute an infinite sequence of (at most double) eigenvalues. The numbers
v = v(m) will be called characteristic exponents. The particular function
go(B) == 1 is always a trivial eigenfunction, with eigenvalue yeO) = O. For
large v, since the total change in the Priifer phase-angle arctan(ulu') differs
from 21TV2 by at most s1T12, the number N(v) of characteristic exponents
v(m) ~ v satisfies N(v) = 2v + 0(1).

The preceding theoretical statements are special cases of results of Lynch
[11] on Surm-Liouville problems with piecewise analytic coefficient functions.
In particular, the gm are the eigenfunctions of the piecewise smooth Sturm
Liouville system

(pg')' + pg = 0, (12)
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orthogonal with respect to the weight function pCB), or p orthogonal. Since
pCB) is bounded away from 0 and 00, square integrability is equivalent to the
condition f I u(B) 1

2 dB < + 00, and the gm(B) are a (complete) p-orthogonal
basis for periodic square-integrable functions (on the unit circle).

This follows perhaps most generally from the theory of integral equations.
For any A < 0 we can construct a symmetric, continuous, positive periodic
Green'sfunction G(()o, () whose first derivative makes a unit jump at () = ()o.

This is a compact operator, of Hilbert-Schmidt type in the Hilbert space
with norm [f p(()u2(()d()]1/2.

Orthonormalizing the gm((), and integrating with respect to pgm(O)d(),
we can therefore expand any solution of (1) and (2) into a mean-square
convergent series of the form

(13)

To prove the termwise differentiability of the resulting series requires other
considerations, which I shall present now.

Dirichlet problems.

The functions rV(m)gm(() are appropriate "singular functions" for any
piecewise Laplace DE V . (pVu) = 0 for which p = pCB) is given by (1'),
i.e., is piecewise constant in angular sectors. For the Dirichlet problem in
any disc D: r ~ a, with u(a, 0) = U(O) given on the boundary, the solution of

V . [p(()Vu] = 0

can be written down by inspection. It is

(14)

(15)

where the Cm are chosen to satisfy the boundary conditions on r = a. That
is, we make

The condition for this equation to hold is (by the ''p-orthogonality'' of the
gm(B) with respect to the weight function p(()):

cm = a-v(m) f p(O)U(()gm(()d(). (15')

For any square-integrable U((), we have L cm
2a2v(m) < + 00; therefore for

r < a, the series (15) and all its partial derivatives with respect to rand ()
are uniformly convergent on any disc r < a < e (e > 0). On each ray B= Cii ,

for r < a, the normal derivative ou/ro() therefore has a jump which satisfies (2).
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It follows that, for the approximating subspace spanned by piecewise
bicubic polynomial functions of class CI and singular basis functions
B(x)B(y)rv<mlgm(O) with 0 < vern) < 4, the Rayleigh-Ritz method should
give approximate solutions differing from the exact solutions by O(h4).

4. Two-REGION CASE

The nature of angular singularities of the piecewise Laplace equation5 is
well illustrated by the case of two regions (sectors). The formulas become
simpler if we take advantage of the symmetry, and locate the two interfaces
along the rays 0 = ±~, separating two homogeneous angular sectors
Ro : 1 0 I ~ ~ and R I : ~ ~ 1 0 I ::::; 7T (Fig. 2); the case ex = 7T/4 of a quadrant

Ro

FIGURE 2

is typical. Then go(O) = I is a degenerate eigenfunction coCO); the other
even eigenfunctions of V . (pVu) = 0 have the form

in Ro : 101 ~ ex,
in R I : ex ~ I 0 I ~ 7T,

(I5a)

while the odd eigenfunctions have the form

lBo sin vO
g2n-I(0) = sn(O) = B . ( 0)ISmv7T -

(I5b)

The interface conditions for such solutions have, respectively, the forms

and
Po tan vex = - PI tan V(7T - ex)

PI tan vex = - Po tan V(7T - ex).

(I6a)

(l6b)

For fixed ex, the left sides of (16a)-(16b) are increasing functions, while the

5 The formulas of this section are taken from a report on "Angular singularities of
polyharmonic functions" written by me in January, 1969.
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right sides are decreasing functions. Hence the number of eigenvalues
(characteristic exponents) in the range 0 < v < N satisfies

n(N) = (N1T/ex) + [N1T/(1T - ex)] + 0(1), (17)

which is the number of times that tan vex and tan V(1T - ex) pass through 00

in the range 0 < v < N. Note that, normally, the roots of (16a) and (l6b)
are different. Hence, in contrast to the one-region problem whose eigenvalues
have multiplicity 2, the two-region problem normally has simple eigenvalues.

For instance, suppose ex = 1T/4, and let f3 denote 1Tv/4. Then, in (16a),
(1T - ex) = 31TV/4 = 3f3, and one can compute the n-th characteristic exponent
v(n) for even eigenfunctions by trigonometric algebra. This gives

tan 3f3 = (3 tan f3 - tan3(3)/(1 - 3 tan2(3). (18)

Therefore, when ex = 1T/4, (l6a) is equivalent to

(19)P = PO/Pl'
3 tan f3 - tan3 f3 = _P t f3

I - 3 tan2 f3 an ,

The equation has a common factor tan f3 = 0, which gives the solution
Eo{fJ) = I with v = 0, and also the integral characteristic exponents v = 4,
8,12,..., which correspond to analytic solutions (no singularity) of (I) and (2).
These describe the angular variation of the even harmonic functions
satisfying (2):

I, ,4 cos 40, ,8 cos 80'00' ;

see Remark 4 below.
Factoring out tan f3, we get from (19) also

(3 + P) = (3P + I) tan2 f3, I 3 + P 1
1

/
2

or tan f3 = 3P + I (20)

This has roots ± f30 , where

f30 = arctan [(3 + P)/{3P + 1)]1/2 (20a)

lies in the interval (arctan I/V3, arctan v3) = (1T/6,1T/3). By the periodicity
of tan 0, this gives characteristic exponents

4
v±{n) = - [±f3o + n1T] = ±(4f30/1T) + 4n1T

(2Ia)

associated with even eigenfunctions {with (ISa) and (l6a».
Similarly, we can compute from (l6b) the characteristic exponents of odd
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u = \Pax + by,
( ax + by,

eigenfunctions (15b). These correspond to the odd harmonic functions
which satisfy (2), namely:

r2sin 28, r6 sin 68, rIO sin 108,....

The other odd eigenfunctions can be derived from an analog of (18), but
replacing the number P by liP. This replaces f30 by f31 in (20b) f31 = arctan
[(3P + 1)/(3 + P)]1/2 = arccot (tan (30) = 7T/2 - f30, and hence (2la) by

v±(n) = ~(4f30)/7T) + 4n + 2. (21b)

Remark 1. The reader should be cautioned that formulas (18)-(2lb)
are only valid in the special case IX = 7T/4. The case IX = 7T/2 (of the Schwarz
Reflection Principle) is presumably easier; the one-region analog has been
studied in depth by H. Lewy and others. The special solutions

IOI<;7T
18-7T!=7T

are noteworthy; the "angle of refraction" of the lines of flow satisfies (tan i)/
(tan r) = P, instead of Snell's Law. The extension of other polynomials
across the interface is equally easy (but not unique; see Remark 4).

Remark 2. For any IX (in the two-region case s = 2 of (1')), the even
eigenfunctions g2k(O) = Ck(O) and the odd eigenfunctions g2k-1(O) = Sk(O)
are analogs of the cosine and sine functions, respectively. When restricted
to the interval [0, 7T], each of these sets of eigenfunctions is the set of all
eigenfunctions of an essentially regular Sturm-Liouville system, with piece
wise constant coefficients. Thus all eigenvalues are simple.

Remark 3. Consider the eigenfunction problem for a disc of radius a
divided into two sectors Ri(i = 0,1) as above, for the DE

V' . [p(O)V'u] + k 2pu = 0, (22)

where
p(8) = Pi' p(O) = Pi in Ri [i = 1, 2], (22')

and Po/Po = PI/PI. The eigenfunctions are the products Jv(m)(kr)cm(O) and
Jv'(m)(kr)sm(8). For IX = 7T/4, the v(m) are given by (22a) and (22b).

Hence for s = 2, IX = 7T/4, a suitable set of singular basis functions,
augmenting piecewise bicubic polynomials of class (;1 (the modified "bicubic
Hermite" approximating subspace), is provided (with the x- and y-axis
located on the lines 0 = ± 7T/4), by the functions B(x)B(y)rv<mlcm(O) with
m = 1,2, 3 (for even eigenfunction calculations).

Remark 4. In two-region problems, it is nontrivial to determine the
appropriate subspaces of Hermite approximations by piecewise polynomial
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functions; the interface condition (2) prevents linear polynomials defined
on R1 from being continued to analytic functions on Ro (which we take to be
the first quadrant for simplicity). To be sure, the functions I and xn, yll for
n > I satisfy (2) trivially, and so does any function

1
xy F(x, y) on R1

uFCx, y) = Pxy F(x, y) on Ro ,

for example, for F(x, y) any polynomial. Hence one can extend any
polynomial with missing linear terms from R1 to one of the same degree on
Ro , so as to satisfy the interface conditions (2). However, it is not clear how
one should extend the even (in 0) linear function x + y = v2 r cos (0 - TT/4)
or the odd linear function from R1 to Ro . For tan (TT,.,,/4) = liP, one can
extend the latter to r sin ,.,,«() - TT/4), but the odd "singular" function
r·(l)sl(O - TT/4) described earlier in this section is probably preferable (and
rv(l)cl(O - TT/4) probably preferable to any even extension of x + y).

Note that the continuation of higher-degree polynomials across the
interface is not unique. Thus any piecewise polynomial function of the form

satisfies (2).

5. SOURCE PROBLEMS WITH q = 0

We next apply the formal expansion of Section 3, (13), to source problems
with q = 0, that is, to the generalized Poisson equation6

(23)

Here the gk(O) are the orthonormalized eigenfunctions of the indicial periodic
Sturm-Liouville system (10)-(10'), so that

Assuming termwise differentiability, we are led heuristically to expect that
the series (13) will satisfy (23) if and only if

f;'(r) + ! f:n(r) - v(n:)2 1m = sm(r).
r r

(24)

6 This expansion has been used by R. Bruce Kellogg, op. cit. supra, but with other aims
in view.
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This is evidently an inhomogeneous linear ordinary DE with a regular
singular point at r = 0, and the following remarks refer to this general
situation; cf. [1, p. 17].

First, we simplify our notation by suppressing the subscript rn and we
set fm(r) = fer) = rV!fi(r), where (in our general notation) v = vern). Since
r V is a solution of the reduced equation

L[f] = 1"(r) + ! 1'(r) - v: fer) = 0,r r

the function her) = !fi'(r) satisfies

r2v+l h'(r) + (2v + l)r 2v her) = rv+1 s(r),
or

d d
- [r 2v+1h(r)] = - [r 2V+l!fi'(r)] = rV+ls(r).
dr dr

Integrating, we get

!fi'(r) = her) = rLl [A + (rV+ls(r)dr].

For s(r) = O(rB), therefore, !fi'(r) = Ar-2v-1 + O(rB+1-v), whence

!fi(r) = ar-2v + b + 0(rB+2-v),

(25)

(26)

(27)

for suitable constants a and b.
This shows that fm(r) = rv!fi(r) is bounded and satisfies (24) with

sm(r) = O(rB) if and only if

fm(r) = hrv+ 0(r/l+2). (28)

For simplicity, I have ignored above the possibility of a logarithmic factor.
This will arise in (26) if f3 = -2 - v and in integrating (26) to get (27) if
f3 = v - 2. Hence it arises if f3 = ± (v - 2). This is to be expected from
dimensional considerations, since this is the case that the operator L in (25),
applied to a(r) = r±v would give zero; it arose in the example of Section 2.

The inhomogeneous linear DE (24) can also be attacked in two other
ways. If

ao

s(r) = So'B + SlrB+2 + S2rB+4 + ... = L Skrll+2k (29)
k=O

is the product of r B times an analytic function, then we can apply the method
of undetermined coefficients to the formal power series

ao

fer) = ftrfJ+2+ j;rBH +fsrfJ+6 + ... = L fkrB+2k (29')
k=l
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Differentiating the series (29') termwise, substituting in (24):

r + r-1f' - v2r-2f = s(r),

and equating coefficients of r lJ, rlJ+2, we get the infinite sequence of algebraic
equations

[(,8 + 2)2 - v2lfl = So, [(,8 + 4)2 - v2lf2 = SI , ••• , (30)

which can be uniquely solved unless v - ,8 is an even positive integer.
Moreover, the series (29') obtained from (29) by (30) has the same radius of
convergence as (29).

Green's function approach.

A second, more general approach to solving (24) consists in constructing
the Green's function of the DE (25), for the condition that the solution f of
(24) be bounded at the origin and satisfy feR) = 0 for some specified R > 0.7

To construct this Green's function, we set as usual (to satisfy the boundary
conditions):

jAr V

G(r, p) = IB[(rIR)V _ (Rlr)v]
for r E [0, p],
for r E [P, R].

(31)

The continuity condition that G(p-, p) = G(p+, p) gives

Apv = B[(pIR)v - (Rlp)v]. (31')

The condition that 8GI8r have a jump of ones across r = p is equivalent to

ApV + I-' = B[(pIR)v + (Rlp)v], I-' = plv. (31/1)

(32)
r E [p, R].

r E [0, p],

Subtracting (31') from (31/1), B = l-'(pIR)vI2; back-substituting into (31'),
A = (1-'12Rv)[(pIR)v - (Rlp)v]. Now substituting into (31), we get

I~ [R-2v(pr)v - (rip)v]
G(r, p) =

~ [R-2v(pr)v - (plr)v]

This is evidently bounded for any fixed p.
Consequently, for any nonnegative integer m, the operator ~m[s] defined

for each v = v(m) by the Green's function G = Gm of formula (32) is
bounded on qo, R].

7 The general solution fer) of (24) which is bounded on [0, R] will then be the sum of
the particular solution constructed as f: G(x, p)s(P) dp and an arbitrary multiple of r v•

8 See Birkhoff-Rota, "Ordinary Differential Equations," 2nd ed., p. 309. In (24) above,
clearly po(r) = I.
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6. ONE-GROUP DIFFUSION EQUATION

A similar algorithm yields for any specified A a formal solution of the
one-group diffusion equation

Y' . [p(8)Y'u] = Q(8)u, Q = q(8) - Ap(8), (33)

in ascending powers of r. We look for a series solution of the form

00 00

u(r, 8) = L rV+2kG2k(8) = rv L r2kG2k(8).
k~O k=O

(34)

We start the series by a term rVGo(8) where, as in Section 3, the choices
v = v(m) and Go(8) = gm(8) give a solution of the DE Y' . (pY'u) = O. We
then compute G2k(8) recursively from G2k- 2(8), for k = 1,2,3,... , by
substituting from (34) into (33) and setting the coefficient of rv+2k- 2 equal to
zero. The result is the inhomogeneous linear DE

(35)

G27H(8) is a known periodic function; we seek for the unknown periodic
function G2k(8) which satisfies (35) and (2). It is computable from the Green's
function of the operator d(pd/d8)/d8 + (v + 2k)2 and the periodicity
condition; this Green's function is always positive if Q(8) is.

In the simplest case p === 1, Q(8) = K 2, the above algorithm gives the
solution Im(Kr) {~r:}m8, where 1m is the modified Bessel function and
v(m) = m2.

The example just given is atypical, not only because no singularity is
involved, but more essentially because q(8) = ap(8) and p = bp(8) for
constants a = 0 and b = 1. The coefficient functions p, q, p are all propor
tional; as a result, the functions G2k(8) are independent of A. Indeed, they
are all proportional to cos m8 or sin m8, regardless of Aor k.

Although the method used above could be generalized to singularities of
this special type, I prefer to go directly to the general case. I do this especially
because, in the eigenfunction problem, Q(8) is not positive, but negative or of
mixed sign.

Eigenfunction problem.

To handle the general eigenfunction problem with A as an unknown
parameter, (33) should be rewritten as

L[u] = - Y' . [p(8)Y'u] + q(8)u = Ap(8)u. (36)
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Note that L = - V' • [pV'] + q has a positive Green's function G(x, y; g, 'YJ),
which expresses the conditional probability that a neutron "born" at (x, y)
will produce a "fission" at (g, 'YJ). Our objective is to construct a small set of
(local) singular basis functions which will be independent of the unknown '\.
This is essentially because ,\ is determined by global considerations.)

Physically, p can be thought of as the fission cross section, q as the
absorption cross section, and p as the neutron diffusivity. If we consider the
u on the right side of (36) as a "source" density (of neutron population or
flux), then the u on the left represents the density of "fission" neutrons of the
next generation.

Two-region problems.

It would be misleading to suggest that I "know" the nature of the resulting
singularity in any rigorous sense. However, the preceding considerations
suggest that the local behavior can be matched pretty well, for two-region
problems, by linear combinations of functions of the form r v(ml+2k gm(()),
where the gm(()) are the functions described in Section 4. One or two terms
ofthe form rv(ml In gm«()) may also be needed (e.g., for v(m) = 2; see Section 3)

For the somewhat more general source problem:

L[u] = - V' • [p«())V'u] + q«())u = '\p«())u + sex, y), (37)

we can expand in a power series in ,\ in the "subcritical" case. Properly
normalizing sex, y) with respect to the "subcriticality" '\0 - '\, we can then
achieve the "critical" u as a limit of solutions of L[u(n+ll] = u(nl, i.e., of
"n-th" generation" neutrons. By the formulas of Sections 3 and 4, these can
also be obtained by setting uo(x, y) = sex, y) and, recursively,

- V' • [p(())V'u] = Q«())u, Q(()) = '\p«()) - q(()). (38)

This would seem to yield only terms of the kind described above.

Added in proof' Many of the results here have been generalized by R. B. Kellogg,
"Singularities in interface problems," in SYNSPADE 1970 (Bert Hubbard, Ed.), Academic
Press, 1971, pp. 351--400.

Prof. R. E. Lynch has pointed out that, although the source problem (4) is "well-set"
in the Sobolev space Wi" of functions whose Laplacian is square-integrable, it is even
better set (pointwise well-set) if one defines s(lJ) = t for IJ = ±7T/4, r > 0, and s = !
for r = O. In this case, the sum of the series (6) has a Laplacian which can be computed
term-by-term in polar· coordinates, by a pointwise convergent series.

He has also pointed out that one can solve (4) analytically in the square [-7T/2, 7T/2] x
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[-1T12, 1T12] of Fig. 1, for the boundary conditions u(x, y) = 0 for x = ±1T12 or y = ±1T12,
by using double Fourier series. The solution is

1 1 1 . .
u(x, y) = - - I I -:- -.-- Sin 2jx Sill 2ky

1T
2

odd 1,k Jk J2 + k
2

1 1. .- - I - [Sill 2mx + sm 2my]
41T oddm m3

4 (_1)(Hk-2)/.
- -;2 I I 'k(k 2 + .•) cos jx cos ky

odd ;,k J J

I . I 1+ - I -3 . h 2 [sin 2mxSm(y) + sin 2mySm(x)],
41T odd m m sm 1Tm

where Sm(t) = sinh(2mt + m1T) - sinh(2mt - m1T).]
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